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FIG. 4. Dependence of current-coupled 7;-mode growth rate on ion tem-
perature gradient for three values of the current parameter.

destabilizing and mode altering influence of field-aligned
current as discussed in this paper. We should note, however,
that the transport consequences of the destabilizing effects of
current may not be as significant as the coupling to the resis-
tive g mode. If we estimate the anomalous transport with the
intuitive D~ (Ax)2/At~y/k %, and note that the current de-
stabilization increases growth by a factor of order 2 while

shifting maximum growth from &, p, $0.1 to k, p; R 1.0,

then we would expect a 50-fold decrease in the rate of anom-

alous diffusion. This is encouraging, but clearly, a more com-

prehensive nonlinear treatment-coupled %, mode is required

to elucidate the transport consequences.

Other possibly important effects characteristic of RFP’s
that are missing from both of these theories are beta effects
and effects associated with toroidal geometry. It appears
that the accurate assessment of the role of the 7, mode in
RFP’s awaits a comprehensive linear kinetic theory that in-
cludes all of the sources of free energy—field curvature, dia-
magnetic, and field-aligned currents—and which is also ca-
pable of dealing with the finite beta, collisionality, and
strong magnetic shear typical of those devices.
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Absorption of waves at the ion-cyclotron frequency range by drifting

electrons
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Waves in the ion-cyclotron range of frequencies are shown to be Landau damped by drifting
electrons in the presence of an equilibrium electric field. Absorption occurs even if both the
electric component of the wave parallel to the equilibrium magnetic field and the component of
the wave vector perpendicular to the equilibrium magnetic field are zero.

Absorption of waves on the order of the ion-cyclotron
frequency by electrons has been observed recently in the
Elmo Bumpy Torus-S' and in the Tandem Mirror Experi-
ment-U.? In both experiments it seemed that the resonance
condition for Landau damping, @ — k,v, =0, was satisfied,
where o is the wave frequency, k, is the wavenumber in the
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direction of the equilibrium magnetic field, and v, is the ther-
mal velocity of the heated electrons. Waves whose electric
field parallel component E, is finite are expected to be heavi-
ly damped indeed. However, the component E, of waves at
the ion-cyclotron frequency range is usually very small.?
Evenif E, is zero there can be an absorption attributable to a
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finite Larmor radius effect if the component of the wave
vector perpendicular to the equilibrium magnetic field &, is
not zero. This effect, called transit time damping, was de-
scribed by Stix* and later by Scharer et al.> The purpose of
this Brief Communication is to show that even when both E,
and k, are zero, there can be a substantial absorption of the
waves by the electrons resulting from the presence of an
equilibrium electric field accompanied by a drift of the elec-
trons. Such equilibrium electric fields have been observed in
both EBT-S and TMX-U. If the drift velocity of the electrons
is v;, and the resonance condition for Landau damping
holds, the quantity Q, which describes the rate of dissipation,
is about (@*/w?) (V1/v}), where w, is the electron plasma
frequency. For values of the parameters such as those in
fusion plasmas, Q is much smaller than 1. This corresponds
to strong damping.

We study a simple model problem of given waves propa-
gating in an infinite uniform plasma. The current is obtained
by solving the Vlasov equation for the electrons, and the
product of this current and the wave electric field yields the
rate of electron heating by the wave. A similar analysis for a
case of nonuniform plasma was studied recently.® The pres-
ent analysis is restricted to uniform plasma only but allows
an equilibrium electrostatic field and the corresponding
steady-state drift velocity.

Let us consider an infinite uniform plasma immersed in
uniform static electric field E, and magnetic field B, of the
form

E,=ZXE, B,=:2B,. (n
The equilibrium distribution function of the electrons G is a
function of the constant of motion p only,

p=vi + (v, +v,)> + v, v,=cEy/B,, (2)

where v is the electron velocity. Waves whose electric com-
ponent E, and magnetic component B, are

iCkox + Kz — wt (kX + Kz —
E, =Ee"" T 790 B =BT IE T (3)

propagate in the plasma. The perturbed electron distribution
function is

f=Gp) + F(y)e+re—on (4)

where F obeys the linearized Vlasov equation,

, JF oF JF
i(—o+ kv, +k,v,)F—eE ———Q(v s x—-)
( o ™

_dp dG 2e
=S=7t——(-1;=7n—[-E'U+Ud(—Ey+UXBZ
—0,8)] 2. (5)
dp

Here Q) is the eB,/mc, e and m are the electron charge and
mass, and c is the velocity of light in vacuum. By using one of
Maxwell’s equations we have

B, = — (k,c/0)E,. (6)

The unique periodic solution of the Vlasov equation is®
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F(t) ={exp[2mi( — @ + k,v,)/Q] — 13!

o
Xf dt’' S(t+ t’)exp(z’( — o+ ku,)t’
0

k
+’—Qi[vy(t+t')—vy(t)]), 7

where the integration is performed along the characteristics:
v (241" = [v,(¢) +v,]sin Q' + v, (¢)cos Q'
v(t+1t")= —v,+ [v,(0) +v,] (8)
X cos ' — v, (t)sin Qt’,
and 7, = 27/Q. We restrict ourselves now to the case
|( — @ + k,v,/Q| <1. This applies in particular when the
frequency @ is on the order of 2;, the ion-cyclotron frequen-
cy. Then if k,v, ~@, the quantity (o — k,v,)/} is on the
order of m/m;, where m; is the ion mass. Thus we approxi-
mate F as

Fit)y=[—( —w+kv,)to]“fodt'S(t+t')
0

ik, ,
o [v, (2 +1 )—vy(t)]). €

Let us consider the terms in the last integral that are propor-
tional to

X exp(

2 ik
I.—.f dt’vx(t+t’)exp(£—nivy(t+t’)). (10)
0

Since we may write v, and v, in the following form:
v, = —vu sinlt”, v, = —v,; +v cost”, (11)
vi=vl + (v, +v,)%

the integral (10) is zero. We perform the integration in the
expression for F [Eq. (9)] by using Eq. (11), and finally

obtain for F
ik,
xp{ — n (vy +v,)

k
X[UZE,J0+Ey(ivlJ, i vdJo)] 224G (13
7] m dp

F=— ' .
(—w+k,v,)

Here J, is the Bessel function of order # and its argument is
(k,v, /).

Since we have found the perturbed distribution function
we may now calculatethecurrentj = — efvF d *v. The com-
ponent, is zero because the x component of the integrand is
antisymmetric with respect to v,. We now specify the form
of G,

G = (Ny/m'%¥)exp( — p/v?), (13)
and by performing the integration we obtain

J. = (X /mo)p[1 + pZ(p) Hpho(r)E,
+ [ihy(r) — sho(r)]E, },

Jy = (o} /ma){ — pl1 + pZ(p)][sho(r) + ik, (r)]E,
+ [(1 4+ pZ(p))s’ho(r) + ish,(r)
+pZ(p)h,(r)1E,}, (14)
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where o) =47Nye’/m, p =ow/k,v,, s=v,/v,, s=0v,/v,,
r=k,v,/Q, and Z is the plasma dispersion function. The
functions Ay (r), A,(r), and h,(r), given as

ho(r)zf dttJi(rtye ',
0

hl(r)EJm dt t Wy (rt)J,(rt)e ", (15)
0

hz(r)EJ det3J%(rt)e *,
0

can be formally represented by hypergeometric functions. If
the component E, of the waves is of the same order of magni-
tudeas E , then, since 7 and s are usually small, the current to
lowest order is

J. = (i} /2mw)p*[1 + pZ(p) E,, j, =0. (16)
The rate of electron heating is
> @’
Re(E*j) = —2p* Im[Z(p) ]|E, | = —2-p’e ~*'|E. |*.
2rw Jro
(17)
The value of Q expresses the rate of dissipation
O=(wE*E)/Re(E*j). (18)
In this case Q is
Q= [2Jre*/ (a0 p’e—*) | (EE/E *E,), (19)

and is very small, corresponding to heavy damping. How-
ever, waves at the ion-cyclotron frequency range have very
small E, as a result of the high conductivity of the electrons
parallel to the equilibrium magnetic field. Taking E, to be
zero, we calculate next the work done by the component E,.
When there is no drift, the heating is a finite Larmor radius
effect that requires a finite k.. The rate of heating is then
given by

Re(E*j,) = (02/Nmw)pe “hy(r)|E, |, (20)
in agreement with Refs. 4 and 6. If there is a drift, then even if
the propagation is parallel and k, is zero, there is heating
given by

Re(E*j,) = (w2/NTw)pe *s°|E, | (21)

One may wonder why the presence of a drift, which may
be eliminated by a Lorentz transformation, can cause heat-
ing. Assume for simplicity that &, is zero and let us solve the
problem in a frame moving with a velocity of o, = — v, <c.

The equilibrium fields and distribution function in the mov-
ing frame are

E, =0, Bj=Byg,

pl — v;Z + U;,Z + UZIZ’

G = (Ny/7/%})exp( — p'/v}),
(N v;)exp( —p'/v;) (22)

where the prime denotes quantities in the moving frame. The
wave fields,which had a perpendicular electric component
only in the laboratory frame, also have a parallel component
in the moving frame. They are

E = [§ — (k,v,/0)2]E, "™,
B = — (k,c/w)RE, """,

The heating attributable to the component £ can be found

(23)
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by substituting the value of £ into Eq. (17). The rate of
heating agrees with that given by Eq. (20), which was de-
rived in the laboratory frame.

For both cases, the case of oblique propagation and the
case of drift, we can write the Q of the system as

Q=7"(w/w,)*/(pe~*d), (24)

where, when s is zero, d is 4, (r) (r 2/4 for »small), and when
ris zero, d is s°.

In fusion plasmas w,, is typically on the order of () and
since @ is on the order of Q,, »*/w} is on the order of
(m/m;)?. The number d in Eq. (24) is usually small, but in
hot plasmas it can be much larger than the square of the mass

ratio. As a result, near the Landau resonance (p ~ 1/V2), Q
is much smaller than 1, corresponding to strong absorption.

Having completed the analysis of the model problem,
we would like now to estimate the values of some of the
parameters that appear in the model and then suggest more
realistic models for further study.

In cylindrical plasmas, the parameter 7, characterizing
the finite Larmor radius source of heating, is usually at least
on the order of the ratio of the Larmor radius and the per-
pendicular scale length. If we assume that the electrostatic
potential energy of particles at the edge of the cylinder rela-
tive to the axis is comparable to their mean kinetic energy, it
is easy to show that s is also on the order of the ratio of the
Larmor radius and the perpendicular scale length. Thus the
finite Larmor radius effect and the drift are expected to have
comparable contributions to the heating. In mirror devices
the potential at the end cells may be high, which could cause
the absorption attributable to the drifting electrons to be
dominant.

It is important to evaluate the magnitude of E,, since
even a small £, can cause strong heating [see Eq. (18)].
Here we give a simple argument to show that in the presence
of drift, E, can differ from its zero value. Assume a cold fluid
with a drift velocity v, = — v, J in the presence of the static
fields given by Eq. (1). Since the pressure is zero, the parallel
component of the linearized momentum equation is
G = —¢k, — ev—de,

dt ¢
wherev,, is the perturbed electron velocity. In the absence of
drift, the zero electron mass approximation results in E,
= 0. However, the presence of drift yields [with the use of

Eq. (6)]
E,/E, = vk, /0. (26)

This ratio is on the order of the magnitude of s near the
resonance. A parallel electric field of that magnitude can
cause heating comparable to that heating described by Eq.
(20).

We have studied here a simple model problem in an
infinite uniform plasma in order to demonstrate the effect of
drift on electron heating by low frequency waves. In order to
investigate this phenomenon in a laboratory plasma a more
complicated model is required, which will include the effects
of the gradients of the plasma density and the static electric
field and which will solve for the wave fields in a self-consis-
tent manner.

(25)
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An asymptotic approach is used to analyze the main features of weakly nonlinear waves
propagating through an electrically conducting gas permeated by a transverse magnetic field.
The analysis leads to an evolution equation, which characterizes the wave process in the high-

frequency domain. The growth equation for an acceleration front is recovered as a special case.

The influence of the magnetic field on the decay behavior of a sawtooth profile, which is
headed by a weak shock front and ends with a magnetosonic disturbance, is investigated. A
remarkable difference between the plane and cylindrical wave profiles is noted; for instance,
when the adiabatic index y is 2, the field does not affect the decay behavior of plane waves but

does affect cylindrical waves.

In the study of a physical phenomenon ruled by a quasi-
linear hyperbolic system of equations, it is theoretically pos-
sible to look for progressive wave solutions. A general dis-
cussion of small-amplitude nonlinear progressive waves has
been given by Choquet-Bruhat,' who considered a shockless
solution of hyperbolic partial differential equations that de-
pend on a single phase function. Using the perturbation
method devised by Choquet-Bruhat,' Germain,> Fusco,’
and Fusco and Engelbrecht* analyzed nonlinear wave prop-
agation in different material media, while Hunter and Kel-
ler® presented a method for finding a small-amplitude high-
frequency wave solution of hyperbolic systems of quasilinear
partial differential equations. In the present paper we use the
same approach to analyze the decay behavior of a distur-
bance given in the form of a sawtooth profile that consists of
a front shock at the right and a magnetosonic disturbance at
the left. The propagation of a sawtooth profile that ends in a
tail shock can be treated in the same way.

Assuming the electrical conductivity to be infinite, and
the direction of the magnetic field orthogonal to the trajec-
tories of fluid particles, the basic equations governing the
fluid flow can be written as®

p. +up, +pu, +mux='y =0, (1

u +uu, +p~'(p, +h,)=0, (2)

P +up, +yp(u, +mux=') =0, &)

h, +uh, +2h(u, + mux~") =0, (4)
1572 Phys. Fluids 30 (5), May 1987
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where u is the fluid velocity, p the pressure, p the density, ¥
the adiabatic index, 4 = pH ?/2 the magnetic pressure with
H as the magnetic field strength,  is the magnetic perme-
ability, ¢ the time, and x the spatial coordinate. Letter sub-
scripts denote partial differentiation unless stated otherwise.
The letter m takes values of O or 1 accordingly to whether the
motion is planar or cylindrically symmetric, respectively.

Using matrix notation, Eq. (1)~(4) can be written as

Ul+A9U, +B'=0, ij=1234, (5)
where the U’ are components of a column vector U with
components p, 4, p, and A. The components 4°/ of a 4x4
matrix A and B’ of a column vector B can be found by in-
spection of Egs. (1)—(4).

The system (5) is a hyperbolic one with eigenvalues
u+c, u—c, u, and u of the coefficient matrix A. Here,
¢ = (a* +b?)""? is the magnetosonic speed with a = (yp/
p)'"* as the speed of sound and b = (24 /p)"/? the Alfvén
speed. The left and right eigenvectors of A corresponding to
the eigenvalue u + ¢ are

1=(0,pc, 1, 1), "= (1,c/p,a®b?), (6)

where a superscript means transposition.

We look for an asymptotic solution of Eq. (5) exhibiting
the features of progressive waves. Let us assume the follow-
ing asymptotic expansion:

Uilx,t) = U§ + €Ul (x,1,E) + O(e?) (7
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